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Rotation-invariant texture analysis
using Radon and Fourier transforms
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Texture analysis is a basic issue in image processing and computer vision, and how to attain the rotation-
invariant texture characterization is a key problem. This paper proposes a rotation-invariant texture
analysis technique using Radon and Fourier transforms. This method uses Radon transform to convert
rotation to translation, then utilizes Fourier transform and takes the moduli of the Fourier transform of
these functions to make the translation invariant. A k-nearest-neighbor rule is employed to classify texture
images. The proposed method is robust to additive white noise as a result of summing pixel values to
generate projections in the Radon transform step. Experiment results show the feasibility of the proposed
method and its robustness to additive white noise.

OCIS codes: 100.0100, 100.5760.

Texture analysis is a basic issue in image processing and
computer vision. In many practical applications, it is
difficult or impossible to ensure that obtained images
have the same translation, rotation or scaling. This re-
quires that the texture analysis should be ideally invari-
ant to viewpoints, as it is always perceived as the same
texture image by a human observer. More and more at-
tention has been paid to invariant texture analysis[1]. Re-
cently, multi-resolution approaches such as Gabor filters,
wavelet transforms, and wavelet frames have been widely
studied and used for texture characterization. Porter et
al. employed the wavelet transform, a circularly sym-
metric Gabor filter and a Gaussian-Markov random field
to achieve rotation-invariant texture classification and
gave experiment results[2]. Jafari-Khouzani et al. uti-
lized the Radon and wavelet transforms to attain the
invariant features[3]. Haley et al. presented a rotation-
invariant texture classification method based on polar
two-dimensional (2D) Gabor wavelet[4]. Liu et al. pro-
posed a texture classification method based on fractal
dimension using self-similar texture characterization[5].
All of these methods have achieved considerable success
in texture analysis. However, a large number of features
are commonly used, which can lead to an unmanageable
size of feature space. Furthermore, the feature extrac-
tion technique employed may be computationally very
demanding.

We present a new technique for rotation-invariant tex-
ture classification using Radon and Fourier transforms.
This method is proved to be feasible and robust to addi-
tive white noise.

The Radon transform of an image f(x, y), denoted as
R(r, θ) hypothetically, is defined as its linear integral
along a line. The integration along a particular line
defined by a normal distance r from the origin and a
normal angle θ will generate the corresponding Radon
transform point R(r, θ). Mathematically, it is written as

R(r, θ)[f(x, y)]

=
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(r − x cos θ − y sin θ)dxdy, (1)

where −∞ < r < +∞, 0 < θ < π. According to
the Fourier slice theorem, this transformation is invert-
ible. Fourier slice theorem states that for a 2D image
f(x, y), the one-dimensional (1D) Fourier transforms of
the Radon transform along r are the 1D radial samples
of the 2D Fourier transform of f(x, y) at the correspond-
ing angles[7]. Materially, Radon transform projects the
image to the other parameter space. And with useful
property in the scope of this paper, the rotation of an
image by an angle θr, causes the Radon transform to be
shifted through the same amount, i. e.,

f(x cos θr − y sin θr, x sin θr + y sin θr) ↔ Rf (r, θ − θr).

(2)

It goes without saying that wavelet transform is more
popular than Fourier transform. However, Fourier trans-
form is more convenient and speedy for some applica-
tions, such as image retrieval based on contents, machine
vision, vision robots, and so on. According to practice
experience, it is obvious that Fourier transform can be
easily calculated by hardware using fast Fourier trans-
form (FFT).

Fourier transform is a most commonly used tool in the
image processing field. Transforming the image to the
spectrum gives a possibility to further work with other
disposing methods. The Fourier transform of an image
f(x, y) is denoted as F (u, v), whose discrete form is writ-
ten as

F (u, v) =
1

MN

M−1∑
x=0

N−1∑
y=0

f(x, y)e−j2π(ux/M+vy/N). (3)

And in this paper, the property most interested is[6]

f(x − x0, y) ↔ F (u, v) exp(−j2πux0/N), (4)

|F (u, v) exp(−j2πux0/N)|

⇒ |F (u, v)| |exp(−j2πux0/N)| . (5)

To develop a rotation-invariant texture-analysis
method, capturing the features invariant to rotation is
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most important. In this paper we propose a new method
using Radon and Fourier transforms to attain the fea-
tures, this method also is robust to additive white noise.

As shown in Fig. 1, in the proposed method the Radon
transform of the image is first calculated, and then the
Fourier transform and its corresponding module are com-
puted to extract the corresponding rotation-invariant
features. Since the Radon transform is invertible, any
texture information is not lost. Rotation of the input
image corresponds to the translation of the Radon trans-
form along θ. To obtain the uniformity of the Radon
transform in different orientations, the Radon transform
is calculated for a disk area of the texture image. As
shown in Fig. 2, the rotation of the texture sample cor-
responds to a circular shift along horizontal axis in this
figure. Therefore, the translation also is eliminated by
taking the moduli of the Fourier transform of these func-
tions, so rotation-invariant features can be produced.
Finally, a k-nearest-neighbor rule is applied to properly
classify the texture.

By Radon transform, the rotated image is transformed
to an image with a translation change by mapping the im-
age to the other parameter space. So we define Rf (θ, r)
as the image after Radon transform and with a rotation
to image f(x, y), the Radon transform will generate a
translation Δθ along θ; its function may be defined as
Rf (θ − Δθ, r).

We apply the Fourier transform to the expressions (1)
and (2) respectively and obtain

Rf (θ, r) ↔ F (u, v), (6)

Rf (θ − Δθ, r) ↔ F (u, v) exp(−j2πuΔθ/N). (7)

Fig. 1. Diagram of the proposed method.

Fig. 2. (a) Texture image example and (b) its Radon trans-
form; (c) rotated texture image example and (d) its Radon
transform.

Then we take the modulus of the expressions (1) and (2)
and get

F (u, v) ↔ |F (u, v)| , (8)

F (u, v) exp(−j2πuΔθ/N) ↔

|F (u, v)| |exp(−j2πuΔθ/N)| = |F (u, v)| . (9)

And for exp(−j2πuΔθ/N), its value equals 1, i.e., the
expressions (8) and (9) are equal indeed. So finally we
get the rotation-invariant feature. This can be seen in
Fig. 3.

We get an image of size 128×400 after these two trans-
forms. But due to the error generated by the algorithm,
the data obtained in practice do not totally accord with
the theoretical result. It is believed that the more pix-
els are calculated, the more accurate result will be at-
tained. But, in order to accelerate the calculation speed,
we finally select a matrix size of 16 × 16. By the way,
the matrix can provide the global and basic information
about image, which is enough for classification. And for
each vector, we calculate the following features:

e1
i = maxμi(aj), i, j = 1, 2, · · · , 16, (10)

e2
i =

1
16

16∑
j=1

μi(aj), i = 1, 2, · · · , 16, (11)

e3
i =

15∑
j=1

(μi(aj) − μi(aj+1))2, i = 1, 2, · · · , 16, (12)

where μi denotes a 16-dimensional row vector and aj is
the value of the vector.

The k-nearest-neighbor rule is a well-established and
nonparametric pattern-classification method. We use it
to classify the texture image into an appropriate class.
In this algorithm, the unknown pattern is assigned to
the class label which is most highly represented among
these neighbors[7]. However, the features may not have
the same significance for classification. Here, we utilize
weights to the features to select the best combination of

Fig. 3. (a) Texture after Radon transform and (b) its mod-
ulus of Fourier transform; (c) rotated texture after Radon
transform and (d) its modulus of Fourier transform.
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features. The weight for each feature is calculated as the
correct classification rate in the training set using only
that feature.

In order to evaluate the performance of the technique
proposed, two different kinds of experiments were inves-
tigated. Data set consists of 15 texture images of size
512 × 512 from Brodatz album[8], as shown in Fig. 4. In
all of the experiments, we used texture images of size
128 × 128 with 256 gray levels.

The first experiment was to test the feasibility of the
proposed method. Each texture image was divided into
16 non-overlapping subimages of size 128 × 128 at 0◦ to
create a training set of 240 (15×16) images. For the test
set, each image was rotated at angles 10◦ to 180◦ with
10◦ increments. In total, we created 4320 (15 × 16 × 18)
samples for the testing set (240 images as training set).
The experiment results are shown in Table 1.

Furthermore, to validate the robustness with the addi-
tive white noise, Gaussian random noise with zero mean
and variance depending on the wanted signal to noise
ratio (SNR) has been added to all of the images. Then
we performed the experiment with same steps like the
test one. Four SNR values have been considered (30, 20,
15, 10 dB). The experiment results are shown in Table 1.

From the experiments, we can draw a conclusion that
the proposed method is very feasible in the rotation-

Fig. 4. Fifteen texture samples from Brodatz album for test.

Table 1. Correct Classification Percentage for
Texture Data (%)

White Noise (dB) 30 20 15 10 0

T1 100 100 97.1 90.5 100

T2 100 100 97.3 90.4 100

T3 100 100 96.7 89.7 100

T4 99.5 99.4 95.5 87.3 99.5

T5 100 100 97.0 89.9 100

T6 99.3 99.1 95.6 86.9 99.3

T7 100 100 97.2 90.2 100

T8 100 100 96.9 89.7 100

T9 100 100 97.5 91.0 100

T10 100 100 97.2 90.3 100

T11 100 100 97.3 90.0 100

T12 100 100 96.9 89.9 100

T13 100 100 96.4 89.6 100

T14 100 100 97.0 90.1 100

T15 100 100 96.5 89.5 100

invariant texture analysis and shows a high robustness
even if the SNR is as low as 10 dB.

In this paper, we introduced a new method for rotation-
invariant texture analysis utilizing Radon and Fourier
transforms. The proposed technique was proved to
be feasible and efficient. And we compared the clas-
sification results with the most recent rotation-invariant
texture analysis methods, for example, the maximum cor-
rect classification percentage (CCP) of 97.9% achieved
on 25 texture images[3], the CCP of 99% obtained on 13
texture images[4], we got over 99% CCPs, and good ro-
bustness to the additive white noise was achieved as well.

But due to the error generated by the calculation, the
data we got in practice did not totally accord with the
theoretical result. So we need to improve the calculation
precision in the future.
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